April 24, 2012 Volume 08 Issue 16

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Future U.S. Navy force may sail with the strength of titanium

Steel may have met its match. An Office of Naval Research (ONR)-funded project will produce a full-size ship hull section made entirely with marine grade titanium using a welding innovation that could help bring titanium into future Navy ship construction, officials announced April 3.

The contractor team building this section recently completed the industry's longest friction stir titanium alloy welds and aims to complete the ship hull section this summer. Friction stir welds more than 17 ft long joined the titanium alloy plates for the section's deck.

"This fast, effective friction stir weld technique is now an affordable manufacturing process that takes advantage of titanium's properties," said Kelly Cooper, the program officer managing the project for ONR's Sea Warfare and Weapons Department.

What it means for the Navy
Titanium metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight, and corrosion resistance. If constructed in titanium, Navy ships would have lighter weight for the same size – allowing for a bigger payload – and virtually no corrosion. But because titanium costs up to nine times more than steel and is technically difficult and expensive to manufacture into marine vessel hulls, it has been avoided by the shipbuilding industry. But perhaps not for much longer.

Researchers at the University of New Orleans School of Naval Architecture and Textron Marine and Land Systems are demonstrating the feasibility of manufacturing titanium ship hull structures. Using lower cost marine grades of titanium, they fabricated a 20-ft-long main deck panel composed of six titanium plates, joined together by friction stir welding – as part of technology studies for an experimental naval vessel called Transformable Craft, or T-Craft.

Since antiquity, blacksmiths have joined iron or steel parts together by heating them in a forge, placing them on an anvil, and striking the two pieces repeatedly with a heavy hammer. After several repetitions of heating and striking, the two pieces were "hammer forged" or "forge welded" together.

Friction stir welding joins metals using the heat of friction produced by a spinning pin tool pressed down on both pieces of metal at their common joint. Friction heating produced by the high-speed rotation causes both metal pieces to heat up to a "plastic" condition, but not to melt. As the tool passes down the common joint line, the heated, plasticized metal from both pieces is kneaded together in the rotating tool's wake, forming the weld between them.

How it was accomplished
Friction stir welding works well for most aluminum alloys. Titanium, however, is difficult to join by the same process because of the high temperatures required, and pin tool materials that erode and react with titanium, weakening the weld.

The researchers overcame that problem by using new titanium friction stir welding methods developed by Florida-based Keystone Synergistic Enterprises Inc. with funding from both ONR and the Air Force. The processes were scaled up and transferred to the National Center for Advanced Manufacturing (NCAM), which is a partnership between the University of New Orleans, NASA, and the state of Louisiana.

To fabricate the ship hull structure, more than 70 ft of welded linear joints were made – the longest known welds in titanium made with the friction stir process. This friction stir welding achievement showed a noticeable improvement from previous similar processes. It was made at a high linear speed – indicating reduced manufacturing time; showed excellent weld penetration – indicating a secure connection; and had no distortion of the titanium adjoining the weld.

Experts attribute the success to an effective design of the pin tool, process parameters that emphasized pin tool life, and exact duplication of the process steps from facility to facility and machine to machine.

ONR funds collaborative projects investigating novel shipbuilding materials and improved processes for titanium friction stir welding – especially its affordability – as part of the Sea Base Enabler Innovative Naval Prototype program.

Source: Office of Naval Research

Published April 2012

Rate this article

[Future U.S. Navy force may sail with the strength of titanium]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2012 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy